AIM AND SCOPE

Journal of Mechatronics, Electrical Power, and Vehicular Technology (MEV) is an internationally peer-reviewed journal aims to provide authoritative global source of scientific information for researchers and engineers in academia, research institutions, government agencies, and industries. The Journal publishes original research papers, review articles and case studies focused on:

Mechatronics: including control system, robotic, CNC Machine, sensor, signal processing, electronics, actuator, and mechanical dynamics.

Electrical Power: including power generation, transmission system, new and renewable energy, turbine and generator design and analysis, grid system, and source assessment.

Vehicular Technology: including electric/hybrid vehicle design and analysis, vehicle on grid, fuel efficiency, and safety analysis.

Selected Applications: including all implementations or implications related to mechatronics, electrical power, or vehicular technology.

MEV’s vision is to become an international platform with high scientific contribution for the global community. MEV’s mission is presenting important results of work, whether in the form of research, development, application, or design.

IMPRINT

MEV is published by Research Centre for Electrical Power and Mechatronics - Indonesian Institute of Sciences (RCEPM-LIPI).

ISSN print: 2087-3379
ISSN electronics: 2088-6985

Electronics edition is available at: http://www.mevjournal.com

All published article are embedded with DOI number affiliated with Crossref DOI prefix 10.14203

ACCREDITATION

MEV has been accredited by National Journal Accreditation (ARJUNA) Managed by Ministry of Research and Technology, Republic Indonesia with Second Grade (Peringkat 2, Sinta 2).

https://sinta.ristekbrin.go.id/journals/detail?id=814

POSTAL ADDRESS

MEV Journal Secretariat:
Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences (RCEPM - LIPI)
Komp LIPI Jl. Sangkuriang, Building 20, 2nd Floor, R209 Bandung, West Java, 40135 Indonesia
Tel: +62-022-2503055 (ext. 215) Tel: +62-022-2504770 (ext. 203) Fax: +62-22-2504773
Business hour: Monday to Friday 08:00 to 16:00 GMT+7
e-mail: sekretariat@mevjournal.com

PUBLICATION FREQUENCY

MEV is managed to be issued twice in every year. The first issue should be in the mid of the year (July) and the second issue is at the end of the year (December).

PEER REVIEW POLICY

MEV reviewing policies are:
Every submitted paper will be reviewed by at least two peer-reviewers.
Reviewers are unaware of the identity of the authors, and authors are also unaware of the identity of reviewers (double blind review method).
Reviewing process will consider novelty, objectivity, method, scientific impact, conclusion, and references.
ONLINE SUBMISSIONS
If you already have a Username/Password for Journal of Mechatronics, Electrical Power, and Vehicular Technology?
Go to login at:
http://mevjournal.com/index.php/mev/login
Need a Username/Password?
Go to registration at:
http://mevjournal.com/index.php/mev/user/register
Registration and login are required to submit items online and to check the status of current submissions.

COPY EDITING AND PROOFREADING
Every article accepted by MEV Journal shall be an object to Grammarly® writing-enhancement program conducted by MEV Journal Editorial Board.

REFERENCE MANAGEMENT
Every article submitted to MEV Journal shall use reference management software e.g. Endnote® or Mendeley.

OPEN ACCESS POLICY
MEV Journal provides immediate open access to its content on the principle that making research freely available to the public to supports a greater global exchange of knowledge.

PROCESSING CHARGES
Every article submitted to MEV Journal will not have any Article Processing Charges. This includes submission, peer-reviewing, editing, publishing, maintaining and archiving, and allows immediate access to the full text versions of the articles.

PLAGIARISM CHECK
✔ iThenticate
Plagiarism screening will be conducted by MEV Editorial Board using Crossref Similarity Check™ powered by iThenticate® and also using Grammarly® Plagiarism Checker.

CROSSMARK
Every article will be published along with Crossmark button in the PDF and in the online abstract page. Crossmark gives readers quick and easy access to the current status of a piece of content.

CITED-BY
Published article will be equipped with Crossref Cited-by service. Cited-by lets publishers show authors and readers what other Crossref content is citing their content.

INDEXING & ABSTRACTING
MEV has been covered by these following indexing services:
EBSCOhost, Google Scholar, Directory of Open Access Journal (DOAJ), Microsoft Academic Search, Science and Technology Index (SINTA), Crossref, Indonesian Scientific Journal Database (ISJD), Indonesian Publication Index (IPI), CiteULike, Cite Factor, Academic Journal Database, ResearchBib, Bielefeld Academic Search Engine (BASE), WorldCat, Sherpa Romeo, Index Copernicus, Open Academic Journal Index (OAJI), Open Access Articles, ROAD: the Directory of Open Access Scholarly Resources, Toronto Public Library, Western Theological Seminary, Ghent University Library, and Electronic Journals Library.

CC LICENSE
MEV Journal by RCEPM-LIPI allows reuse and remixing of its content under a CC BY-NC-SA Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Permissions beyond the scope of this license may be available at http://www.mevjournal.com.
If you are a nonprofit or charitable organization, your use of an NC-licensed work could still run afoul of the NC restriction, and if you are a for-profit entity, your use of an NC-licensed work does not necessarily mean you have violated the term.
Journal of Mechatronics, Electrical Power, and Vehicular Technology

Volume 11, Issue 2, 2020

EDITOR-IN-CHIEF
Dr. Haznanz Abimanyu Dip.Ing.
Research Centre for Electrical Power and Mechatronics - Indonesian Institute of Sciences
Komp LIPI Jl Sangkuriang, Blg 20, 2nd Fl, Bandung 40135, Indonesia

ASSOCIATE EDITOR (MAIN HANDLING EDITOR)
Yanuandri Putrasari, Ph.D.
Research Centre for Electrical Power and Mechatronics – LIPI
Komp LIPI Jl. Sangkuriang, Blg 20, 2nd Fl, Bandung 40135, INDONESIA

INTERNATIONAL EDITORIAL BOARD
Prof. Rosli bin Abu Bakar
Faculty of Mechanical Engineering, Universiti Malaysia Pahang
26600 Pekan, Pahang, MALAYSIA

Prof. Dr. Estiko Rijanto
Research Centre for Electrical Power and Mechatronics - Indonesian Institute of Sciences (LIPI)
Komp LIPI Jl. Sangkuriang, Blg 20, 2nd Fl, Bandung 40135, INDONESIA

Prof. Tapan Kumar Saha
Electrical Engineering, The University of Queensland
St. Lucia, Qld-4072, AUSTRALIA

Prof. Muhammad Nizam, S.T., M.T., Ph.D.
Department of Mechanical Engineering, Universitas Sebelas Maret Surakarta
Jl. Ir. Sutami 36 A, Surakarta, 57126, INDONESIA

Prof. Josep M Rossell
Control, Dynamics and Applications (CoDAlab), Department of Mathematics
Universitat Politècnica de Catalunya (UPC), Avda. Bases de Manresa, 61-73 08242 - Manresa (Barcelona), SPAIN

Prof. Dr. Tagawa Yasutaka
Tokyo University of Agriculture and Technology
Naka-machi 2 - 24 - 16, Koganei – shi, Tokyo, 184 – 8588, JAPAN

Prof. Dr. Bambang Riyanto
School of Electrical Engineering and Informatics, Bandung Institute of Technology
Jl. Ganesha No. 10, Bandung 40135, INDONESIA

Prof. Taufik
Director of Electric Power Institute, California Polytechnique
San Luis Obispo, CA 93407, UNITED STATES

Prof. Dr. Adi Soeprijanto
Department of Electrical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember (ITS)
Campus ITS Keputih, Surabaya 60111, INDONESIA

Dr. Jose Guivant
School of Mechanical and Manufacturing Engineering, The University of New South Wales
Ainsworth Building (J17)
Level 3, Room 311B, Kensington Campus, AUSTRALIA

Prof. Pekik Argo Dahono
School of Electrical Engineering and Informatics, Bandung Institute of Technology
Jl. Ganesha No. 10, Bandung 40135, INDONESIA

Prof. Keum Shik Hong
Department of Mechanical Engineering, Pusan National University, KOREA, REPUBLIC OF

George Anwar, Ph.D.
University of California, 101 Sproul Hall, Berkeley, CA 94704, UNITED STATES

Dr. Agus Sunjarianto Pamitran
Dept. of Mechanical Engineering, University of Indonesia
Kampus UI Depok 16424
Depok, Jawa Barat, INDONESIA

Assoc. Prof. John Young
School of Engineering and IT, The University of New South Wales, Australian Defence Force Academy, PO Box 7916, Canberra BC ACT 2610, AUSTRALIA

Dr. Tatacipta Dirgantara
Mechanical and Aerospace Engineering, Bandung Institute of Technology, Jl. Ganesha No. 10, Bandung 40135, INDONESIA

Riza Muhida, Ph.D.
STKIP Surya
Jl. Scientia Boulevard Blok U/7 Summarecon Gading Serpong, Tangerang, Banten, 15810, INDONESIA

Dr.Eng. Budi Prawara
Research Centre for Electrical Power and Mechatronics – LIPI
Komp LIPI Jl Sangkuriang, Blg 20, 2nd Fl, Bandung 40135, INDONESIA

ADVISORY EDITOR
Dr. Endra Joelianto
Engineering Physics, Bandung Institute of Technology
Jl. Ganesha No. 10, Bandung 40135, INDONESIA
FOREWORD FROM EDITOR-IN-CHIEF

The MEV Journal has become an increasingly recognized journal in the past years and is indexed by many internationally recognized indexers greatly due to the dedicated efforts of the outstanding guest editors, the managing editors, and the advisory editors.

In this last issue of 2020, seven papers are published come from multidisciplinary topics including mechatronics, electrical power, and vehicular technology. The topics range from smart guided missile to optimization of ozone chamber for fruits/vegetables sterilization.

The first paper presents the development an air defence system that can control guided missiles automatically with high accuracy. The second paper reviews the different exoskeleton designs and presents a working prototype of a surface electromyography (EMG) controlled exoskeleton to enhance the strength of the lower leg. The third paper analyses the philosophical values of batik to be applied as design in public transportation. The fourth paper describes the purpose to gain an additional lift generated by the surface effect to increase the aerodynamic performance. The fifth paper aims to show a CFD simulation of struts, which affects the aerodynamic of VAWT. The sixth paper presents a new design of an embedded monitoring system for maintenance and production performance monitoring of a sugarcane chopper harvester in a real-time manner. The last paper in this issue has the aim to design and optimize the ozone chamber parameter using pulse width modulation (PWM).

This journal provides discretion in financial term by waiving the articleprocessing charge, since the first volume. So, we would like to acknowledge our immense gratitude to our International Editorial Board members, reviewers and authors for their excellent contributions.

Bandung, December 2020

Editor-in-Chief
LIST OF CONTENTS

Smart guided missile using accelerometer and gyroscope based on backpropagation neural network method for optimal control output feedback
 Kamil Faqih, Sujito, Siti Sendari, Faiz Syaikhoni Aziz ... 55-63

Design and development of the sEMG-based exoskeleton strength enhancer for the legs
 Mikecon Cenit, Vaibhav Gandhi .. 64-74

A study on the applicability of batik for public transportation design in Indonesia
 Yukhi Mustaqim Kusuma Sya bana, Gun Bae Park .. 75-85

Pole placement and LQR implementation on longitudinal altitude holding control of wing in surface effect vehicle
 Muhammad Nanda Setiawan, Evan Rizky Suryana, Leo Parytta, William Andaro 86-94

Numerical investigation of the effect of triangle strut in vertical axis wind turbine (VAWT)
 Tri Admono, Yoyon Ahmudiarto, Amma Muliya Romadoni, Iman Abdurahman, Agus Salim, Teguh Tri Lusijarto, Mochammad Agoes Mulyadi ... 95-101

A new design of embedded monitoring system for maintenance and performance monitoring of a cane harvester tractor
 Estiko Rijanto, Erik Adiwiguna, Aryo Putro Sadono, Muhammad Hafil Nugraha, Oka Mahendra, Rendra Dwi Firmansyah .. 102-110

Optimization of ozone chamber using pulse width modulation for sterilization and preservation on fruits and vegetables
 Adi Waskito, Rendra Dwi Firmansyah, Djohar Syamsi, Catur Hilman Adritya Haryo Bhakti Baskoro, Anisya Lisdiana, Herkuswyna Isnaniyah Wahab .. 111-116

Complete articles can be found at http://www.mevjournal.com
Smart guided missile using accelerometer and gyroscope based on backpropagation neural network method for optimal control output feedback

As a maritime country with a large area, besides the need to defend itself with the military, it also needs to protect itself with aerospace technology that can be controlled automatically. This research aims to develop an air defense system that can control guided missiles automatically with high accuracy. The right method can provide a high level of accuracy in controlling missiles to the targeted object. With the backpropagation neural network method for optimal control output feedback, it can process information data from the radar to control missile’s movement with a high degree of accuracy. The controller utilizes optimal control output feedback, which is equipped with a lock system and utilizes an accelerometer that can detect the slope of the missile and a gyroscope that can detect the slope between the target direction of the missile to follow the target, control the position, and direction of the missile. The target speed of movement can be easily identified and followed by the missile through the lock system. Sampling data comes from signals generated by radars located in defense areas and from missiles. Each part’s data processing speed is calculated using a fast algorithm that is reliable and has a level of accuracy and fast processing. Data processing impacts on the accuracy of missile movements on any change in the position and motion of targets and target speed. Improved maneuvering accuracy in the first training system can detect 1000 files with a load of 273, while in the last training, the system can detect 1000 files without a load period. So the missile can be guided to hit the target without obstacles when maneuvering.

Keywords: Smart missile; backpropagation; neural network; optimal control; output feedback; lock system.

Design and development of the sEMG-based exoskeleton strength enhancer for the legs

This paper reviews the different exoskeleton designs and presents a working prototype of a surface electromyography (EMG) controlled exoskeleton to enhance the strength of the lower leg. The computer aided design (CAD) model of the exoskeleton is designed, 3D printed with respect to the golden ratio of human anthropometry, and tested structurally. The exoskeleton control system is designed on the LabVIEW National Instrument platform and embedded in myRIO. Surface EMG sensors (sEMG) and flex sensors are used coherently to create different state filters for the EMG, human body posture and control for the mechanical exoskeleton actuation. The myRIO is used to process sEMG signals and send control signals to the exoskeleton. Thus, the complete exoskeleton system consists of sEMG as primary sensor and flex sensor as a secondary sensor while the whole control system is designed in LabVIEW. FEA simulation and tests show that the exoskeleton is suitable for an average human weight of 62 kg plus excess force with different reactive spring forces. However, due to the mechanical properties of the exoskeleton actuator, it will require an additional lift to provide the rapid reactive impulse force needed to increase biomechanical movement such as squatting up. Finally, with the increasing availability of such assistive devices on the market, the important aspect of ethical, social and legal issues have also emerged and discussed in this paper.

Keywords: leg-exoskeleton; electromyography based exoskeleton; LabVIEW myRIO; ethical, societal, and legal concerns.

Yukhi Mustaqim Kusuma Sya’bana a, Gun Bae Park b (a Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences, Indonesia; b Industrial Design Laboratory, Art and Design Faculty, Keimyung University, Republic of Korea)
A study on the applicability of batik for public transportation design in Indonesia

This paper attempts to grant Indonesian identity in the development and importing the public transportation equipment from overseas. We reviewed and surveyed the present state issues of Indonesian public transportation equipment design development. The study analyzed the philosophical values of batik in a modern way, the possibility of batik application for important regionalism identity, and identity in design development strategy. As a result, we gather and assess the philosophical values of Batik motifs that contain geographic origin, the essences, and characteristics to be applied as design element strategies. We found the regional identity of the historical, local wisdom essence, acculturation, various colors, and original shapes of the Batik motifs. Moreover, Indonesian fancy design is also supported by other possibilities indigenous material and technique that usually used, particularly in Indonesia. These possibilities were identically Indonesian and also applicable as the sustainable public transport equipment design identity issue solution. This effort was conducted as the turning point to solve the issues of public transport equipment design strategies dependency. Thus, this research will be helpful for aesthetics research in the modern way of the public transportation equipment design concept. (Author)

Keywords: batik philosophical values; public transportation equipment; national identity; vernacular design.

Muhammad Nanda Setiawan a, Evan Rizky Suryana b, Leo Parytta c, William Andaro d (a Department of Renewable Energy Engineering, Universitas Prasetya Mulia, Indonesia; b Department of Engineering Physics, Multimedia Nusantara University, Indonesia; c Department of Physics Energy Engineering, Surya University, Indonesia)

Pole placement and LQR implementation on longitudinal altitude holding control of wing in surface effect vehicle

The longitudinal altitude holding control system (LAHCS) of wing in surface effect (WISE) vehicle has been developed using Simulink/Matlab. The LAHCS is designed to maintain the altitude of the vehicle stands at 1 m above the surface, with a maximum allowable deviation of 0.5 m. The purpose is to gain an additional lift generated by the surface effect to increase the aerodynamic performance. This control system is investigated using two approaches, i.e., the pole placement and the linear quadratic regulator (LQR) methods. Originally, the system shows an unstable response on the phugoid mode, indicated by the positive value of its Eigen. After the pole placement method is applied, the system is stable and capable of maintaining the reference command altitude. This method produces 0.27 of the maximum altitude deviation when the disturbance, represented by the doublet input elevator ±5° is applied. Moreover, the time needed for the system to reach the steady-state response of altitude is around 2.2 seconds. In comparison, the LQR method is also applied to the system with the same scenario. Although the settling time response is quite similar to the previous result, its maximum altitude deviation is significantly reduced by around 80%. In conclusion, both of the methods used to design the LAHCS are capable of maintaining the altitude of the WISE vehicle always below its maximum deviation tolerance.

 estimated, the aerodynamic of VAWT can also affect the framework. In this study, struts are analyzed to show the pressure losses in VAWT. ANSYS computational fluid dynamics (CFD) software is used to investigate triangular strut in VAWT. This study aims to show a CFD simulation of struts, which affects the aerodynamic of VAWT. In CFD software, the aerodynamic of VAWT can be analyzed in terms of pressure losses in the struts. The simulation method starts by making a struts model, then meshing and setting up ANSYS’s boundary conditions. The last iteration runs in ANSYS until convergence. Our research shows the percentage of pressure losses with the variation of the angle of wind 0°, 20°, 40°, and 60° are 0.67 %, 0.52 %, 0.48 %, and 0.52 %. The effect of triangle strut in VAWT did not affect the wind flow to the VAWT blade. The results also indicated that the triangle strut could be applied in the multi-stage of VAWT system.

Estimated, the aerodynamic of VAWT can also affect the framework. In this study, struts are analyzed to show the pressure losses in VAWT. ANSYS computational fluid dynamics (CFD) software is used to investigate triangular strut in VAWT. This study aims to show a CFD simulation of struts, which affects the aerodynamic of VAWT. In CFD software, the aerodynamic of VAWT can be analyzed in terms of pressure losses in the struts. The simulation method starts by making a struts model, then meshing and setting up ANSYS’S boundary conditions. The last iteration runs in ANSYS until convergence. Our research shows the percentage of pressure losses with the variation of the angle of wind 0°, 20°, 40°, and 60° are 0.67 %, 0.52 %, 0.48 %, and 0.52 %. The effect of triangle strut in VAWT did not affect the wind flow to the VAWT blade. The results also indicated that the triangle strut could be applied in the multi-stage of VAWT system.

Estimated, the aerodynamic of VAWT can also affect the framework. In this study, struts are analyzed to show the pressure losses in VAWT. ANSYS computational fluid dynamics (CFD) software is used to investigate triangular strut in VAWT. This study aims to show a CFD simulation of struts, which affects the aerodynamic of VAWT. In CFD software, the aerodynamic of VAWT can be analyzed in terms of pressure losses in the struts. The simulation method starts by making a struts model, then meshing and setting up ANSYS’S boundary conditions. The last iteration runs in ANSYS until convergence. Our research shows the percentage of pressure losses with the variation of the angle of wind 0°, 20°, 40°, and 60° are 0.67 %, 0.52 %, 0.48 %, and 0.52 %. The effect of triangle strut in VAWT did not affect the wind flow to the VAWT blade. The results also indicated that the triangle strut could be applied in the multi-stage of VAWT system.

Strut is used in vertical axis wind turbine (VAWT) to restrain the framework. In this study, struts are analyzed to show the pressure losses in VAWT. ANSYS computational fluid dynamics (CFD) software is used to investigate triangular strut in VAWT. This study aims to show a CFD simulation of struts, which affects the aerodynamic of VAWT. In CFD software, the aerodynamic of VAWT can be analyzed in terms of pressure losses in the struts. The simulation method starts by making a struts model, then meshing and setting up ANSYS’S boundary conditions. The last iteration runs in ANSYS until convergence. Our research shows the percentage of pressure losses with the variation of the angle of wind 0°, 20°, 40°, and 60° are 0.67 %, 0.52 %, 0.48 %, and 0.52 %. The effect of triangle strut in VAWT did not affect the wind flow to the VAWT blade. The results also indicated that the triangle strut could be applied in the multi-stage of VAWT system.
from being sent to the CAN bus, the data are also recorded on a secure digital (SD) Card and sent to the internet of things (IoT) server. In the update time interval testing, the 100 ms interval does not give any error.

(Author)

Keywords: embedded system; cane harvester; electro-hydraulic; control system; tractor maintenance; CAN bus.

Adi Waskito, Rendra Dwi Firmansyah, Djohar Syamsi, Catur Hilman Adiitya Haryo Bhakti Baskoro, Anisya Lisdiana, Herkuswyna Isnaniyah Wahab (a Technical Implementation Unit for Instrumentation Development, Indonesian Institute of Sciences, Indonesia; b Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences, Indonesia; c Research Centre for Geotechnology, Indonesian Institute of Sciences, Indonesia)

Optimization of ozone chamber using pulse width modulation for sterilization and preservation on fruits and vegetables

Ozonizer is a method used for sterilization and food preservation by utilizing ozone produced from plasma discharge. The effective way of obtaining ozone is to use dielectric barrier discharge (DBD) plasma. The manufacture of a controlled ozonizer chamber system is important to result in effective and efficient performance. The aim of this study is to design and optimize the ozone chamber parameter using pulse width modulation (PWM). The system design is added with the Arduino Mega 2560 microcontroller and the L296N motor driver as an ozone generator radiation controller by changing the pulse width modulation to determine the ozone levels produced. The experimental results show that the ozone concentration increases by 50% on average with increasing variations of the 10% duty cycle (PWM) and the ignition time length. The optimum value is achieved on a 70% duty cycle for 60-300 seconds, where the ozone level of 3 ppm is obtained and sustained for fruits/vegetables sterilization and preservation application.

(Author)

Keywords: dielectric barrier discharge; ozone chamber; pulse width modulation; sterilization and preservation.